• <input id="60ykc"></input>
    <object id="60ykc"><acronym id="60ykc"></acronym></object>
  • <menu id="60ykc"></menu>
  • 寧波大學



    發布日期:2020-11-02 作者:數學與統計學院 文章來源:未知  責任編輯:

    報告題目:Algebraic structure and geometrical formulation of adjoint-symmetries of partial differential equation

      人:王寶(加拿大 Brock 大學 博士后)

    報告時間:2020114 10:00-11:00


    報告摘要:Adjoint-symmetries of a partial differential equation (PDE) can be defined as solutions of the adjoint linearization (Frechet derivative) equation holding on the space of solutions to the PDE. Their algebraic structure for general PDE system is studied herein. Symmetries are shown to have three different linear actions on the linear space of adjoint-symmetries. These linear actions are used to construct bilinear adjoint-symmetry brackets. Finally, a geomerical formulation for adjoint-symmetries as 1-forms is studied for general partial differential equaitons (PDEs), which provides a dual counterpart of the geometrical meaning of symmetries as tangent vector fields on the solutions space of a PDE.

    告人簡介: 王寶,加拿大 Brock 大學博士后。2019年中國科學院數學與系統科學研究院博士畢業,導師胡星標研究員?,F在加拿大 Brock 大學,訪問 Stephen Anco 教授,研究方向為孤立子和可積系統。其相關研究結果發在 Int. Math. Res. Not., J. Phys. A,等雜志。

    上一條:材料科學與化學工程學院學術報告——電荷轉移型光電功能配合物的構建與應用研究 下一條:教師教育學院“雪門講壇”(18)